圆柱表面积的教案7篇

时间:
Lonesome
分享
下载本文

通过教案的制定能够让课堂变得更加生动有趣,教案的设计应与课程进度紧密结合,以确保学生在适当的时间接触到必要的知识点,骄才站小编今天就为您带来了圆柱表面积的教案7篇,相信一定会对你有所帮助。

圆柱表面积的教案7篇

圆柱表面积的教案篇1

教学目标

1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

教学重点和难点

1.教学重点:推导圆柱体侧面积的计算方法。

2.教学难点:圆柱体侧面积公式的推导过程。

教学过程设计

(一)复习准备

师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

生:长方形。

师把长方形贴在黑板上。

师:面积如何求?

生:长方形面积=长×宽。(师板书)

师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

(二)学习新课

1.圆柱体的认识。

师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

生:上、下两个面和周围一个面。

师:上、下两个面是什么形状?它们的面积大小怎样?

生:上、下两个面是圆形,面积相等。

师:我们把圆柱上、下两个面叫做底面。(板书:底面)

师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

生:是一个长方形。

师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

师接着拿出两个高矮不一样的圆柱体。

师问:为什么有高有矮呢?由什么决定的?

生:由高决定的。

师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

师出示投影,让学生指出高。

师:圆柱的高有多少条?

生:无数条。

师:高都相等吗?

生:都相等。

师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

师:我们讲的圆柱体都是直圆柱。

2.圆柱的侧面积。

(1)推导公式。

师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

讨论题目是:

a:这个长方形与圆柱体有哪些关系?

b:你能推导出圆柱体侧面积计算方法吗?

然后学生汇报讨论结果。

生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:s侧=ch。

老师板书公式。

(2)利用公式计算。

例1 一个圆柱,底面的直径是05米,高是18米,求它的侧面积。(得数保留两位小数)

老师在黑板上板演。

下面同学们进行练习。投影练习题:

①一圆柱底面半径是5厘米,高5厘米,求侧面积。

②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

师:你能知道第③题圆柱侧面展开图是什么图形吗?

3.圆柱的表面积。

师在课题“圆柱”后面接着写“的表面积”。

(1)推导公式。

师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

生汇报讨论结果,老师板书公式:

s表=s侧+2s圆

(2)利用公式计算。

(投影出示)

例2 计算圆柱体的表面积(见下图)。(单位:厘米)

同学说思路,老师板书,注意每一步结果写计量单位。

解 ①侧面积:2×314×5×15=471(平方厘米)

②底面积:314×52=785(平方厘米)

③表面积:471+785×2=628(平方厘米)

答:它的表面积是628平方厘米。

例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

同学说思路,列式。老师把正确的解答用投影打出来。

(1)水桶的侧面积

314×20×24=15072(平方厘米)

(2)水桶的底面积

314×(20÷2)2

=314×102

=314×100

=314(平方厘米)

(3)需要铁皮

15072+314=18212≈1900(平方厘米)

答:做这个水桶要用铁皮1900平方厘米。

小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

(三)巩固反馈

(1)看书第54页第1题。

(2)投影,指出下面圆柱体的'高是几?

(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

(4)一种轧道机,后轮直径132米,长127米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

(6)一种圆柱形小油漆桶,底面周长5024厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

思考题:

(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

提示:

课堂教学设计说明

本节课的教学设计分三个层次。

第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。

第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

板书设计

圆柱表面积的教案篇2

教学目标

1.经历灵活运用知识自主解决实际问题的过程。

2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。

3.体验数学在日常生活中的广泛应用,培养应用意识。

教学重点

运用圆柱表面积公式计算水桶的表面积。

教学难点

注意水桶的表面积只有一个底面积。

教学过程

一、新授

观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。

师:读题之后,你有什么想对同学们说的?

生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

多人板演,一人说想法。

水桶的侧面积:3.143035=3297(平方厘米)

水桶的底面积:3.14(302)2

=3.14152

=3.14225

=706.5(平方厘米)

需要铁皮:3297+706.5=4003.5(平方厘米)

答:做这个水桶要用4003.5平方厘米。

二、尝试:试一试

1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。

注意水桶底面直径和高都是20厘米,怎样在图上画出来。

有的学生可能会说运用比例尺,老师要加以表扬。

2)交流学生画图的.过程和结果。

三、巩固:练一练

1.先让学生独立完成,再交流。

选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。

2.读题,使学生了解木墩的底面不漆。

3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。

四、课堂小结

这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?

归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

五、家庭作业

(一)求出下面各圆柱的侧面积。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

(三)练一练第3小题。

圆柱表面积的教案篇3

一、教学目标

?知识与技能】

结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

?过程与方法】

通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

?情感态度与价值观】

能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

二、教学重难点

?教学重点】

圆柱表面积的计算方法以及在生活中的应用。

?教学难点】

圆柱表面积的计算方法在生活中的应用。

三、教学过程

(一)导入新课

师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)

(二)生成原理

(1)介绍圆柱的侧面积、底面积和表面积

师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

(2)创疑激趣

师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?

(3)小组合作交流

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)

ppt展示

小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

(4)学会计算圆柱的表面积

师:我们已经会求圆柱的'侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)

师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

(三)深化原理

圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

(四)应用原理

如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?

(五)课堂小结

师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?

生:测量、确定笔筒的大小

师:如何确定?

生:确定底面半径,还有笔筒的高

师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

圆柱表面积的教案篇4

教学内容:

p13-14页例3-例4,完成做一做及练习二的部分习题。

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

教学重点:

掌握圆柱侧面积和表面积的计算方法。

教学难点:

运用所学的知识解决简单的实际问题。

教学过程:

一、复习

1.指名学生说出圆柱的特征.

2.口头回答下面问题.

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长宽.

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的.关系,可以知道:圆柱的侧面积=底面周长高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

①这两道题分别已知什么,求什么?

②计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①侧面积:3.142028=1758.4(平方厘米)

②底面积:3.14(202)2=314(平方厘米)

③表面积:1758.4+314=20xx.42080(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

三、巩固练习

1.做第14页做一做。(求表面积包括哪些部分?)

2.练习七第6题。

板书:

圆柱的侧面积=底面周长高

圆柱的表面积=圆柱的侧面积+底面积2

例4:①侧面积:3.142028=1758.4(平方厘米)

②底面积:3.14(202)2=314(平方厘米)

③表面积:1758.4+314=20xx.42080(平方厘米)

圆柱表面积的教案篇5

教学内容:

教材第5~6页例2、例3和练一练,练习一第48题。

教学要求:

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教具学具准备:

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

教学重点:

掌握圆柱侧面积的计算方法。

教学难点:

能根据实际情况正确地进行计算。

教学过程:

一、复习铺垫

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

二、教学新课

1.认识表面积计算方法。

(1) 请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

请同学们看着表面展开的'图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)

162.3 29.4 3.8 42.6

(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

三、课堂小结

这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

四、布置作业

课堂作业:练习一第5~7题。

圆柱表面积的教案篇6

一、检查复习,引入新课

1、复习圆柱体的特征

师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?

引入:今天这节课,我们就一起来学习圆柱的表面积。

?设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】

二、引导探究,学习新知

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)

要求圆柱的表面积,首先应该计算出它的底面积和侧面积。

(二)测量直径,计算圆柱的底面积。

圆柱的底面是圆形,怎样计算它的面积吗?(s=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)

学生口答算式和结果

(三)教学圆柱体侧面积的计算

1、引导探究圆柱体侧面积的计算方法。

(1)设疑:圆柱的侧面是个曲面,怎样计算它的'面积呢?

想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

(2)学生动手操作。(剪圆柱形纸筒)

(3)汇报交流研究结果。(随着学生回答课件展示)

百度图片:

小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体茶叶罐的侧面包装纸的面积

师:(课件呈现圆柱茶叶罐侧面包装图片)

求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。

(四)教学求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算。

3、汇报计算方法及结果,强调单位的使用

小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

?设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

三、解决问题,强化认知。

(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

(二)根据要求练习。

1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

根据学生的计算结果,教学用“进一法”取近似值。

小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

(三)操作练习。

根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。 讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

计算:根据量得的数据,列出相应的算式并算出结果。

?设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

四、课堂回顾,总结提升

1、本节课你有何收获?

2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。

?设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】

圆柱表面积的教案篇7

教材分析

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

学情分析

由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

教学目标

知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

教学重点和难点

重点:教师引导,动手操作得出求圆柱表面积的方法。

难点:计算方法在生活中的应用。

教学过程

一、复习导入:

1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

2、圆面积怎样求?

3、长方形的面积呢?

二、创设情境,引起兴趣:

出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

三、 自主探究,发现问题。

1、分组,讨论:

(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

圆柱的.侧面剪开发现侧面是一个长方形(正方形),

侧面积=长方形的面积=长×宽=地面周长×高。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

(2)、复习引导:(用旧解新)

上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

(3)、小结:小组讨论,将公式延伸。

圆柱表面积 = 圆柱的侧面积+底面积×2

=ch+2π r2

=πdh+2π r2

2、知识的运用:(回到情景创设)

(1)、出示例题:

例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

(2)、独立试做:

(3)、集体讲评。

(4)、讲解进一法。

3.巩固练习:

四、课堂总结:

这一节课重点学习了圆柱表面积的计算方法及运用。

圆柱表面积的教案7篇相关文章:

画花的教案最新7篇

茶的起源教案7篇

画花的教案7篇

好玩的报纸教案7篇

做蛋糕的教案7篇

獾的礼物幼儿教案7篇

水的安全教案7篇

吃饺子的小班教案7篇

竹的环保科学教案7篇

表里的生物教案7篇

圆柱表面积的教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
89209