分数的除法的教案优质7篇

时间:
Brave
分享
下载本文

详实的教案不仅为教师提供了教学框架,也为学生创造了明确的学习路径,教案的设计应注重学生的情感体验,以提升他们的学习积极性和主动性,骄才站小编今天就为您带来了分数的除法的教案优质7篇,相信一定会对你有所帮助。

分数的除法的教案优质7篇

分数的除法的教案篇1

【学习目标】

1、能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养自己的语言表达能力和抽象概括能力。

3、养成良好的计算习惯。

【学习重难点】

1、重点是抽象概括出分数除法的计算法则。

2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

【学习过程】

一、复习

1、列式,说清数量关系。

小明2小时走了6 km,平均每小时走多少千米?____________________________

速度=路程÷时间

2、计算:151×4 ×3 ×2 ×6 971215

8352÷4 ÷3 ÷2 ÷6 9765

二、探索新知

1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

2、探究2÷

(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3

(2) 动手画线段图表示已知条件与问题的关系。

1小时走的路程,再将线段平均分成3份,其中2份

表示的就是2小时走的路程。 3

(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

2要怎样计算?它把除法转化成什么?怎样转化? 3

55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的'规律吗?

______________________________________________________________

三、知识应用:独立完成p31“做一做”的第1、2题。(组长检查核对,提出质疑。)

四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数的除法的教案篇2

分数除法一(分数除以整数)

教学目标和要求

1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2, 探索并掌握分数除以整数的计算方法,并能正确计算。

3, 能够运用分数除以整数解决简单的实际问题。

教学重点

分数除以整数的计算方法。

教学难点

分数除以整数的计算方法

教学准备

教学时数

1课时

教学过程

一, 涂一涂,算一算

1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

(2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的`分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

二, 填一填,想一想

1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

2, 师导学生根据前面的三个活动,总结算法。3,

3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

三, 试一试

练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

四, 练一练

1,第26页第2,3题,让学生独立解决。

教学内容(课题)

分数的除法的教案篇3

一、复习

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

二、教学分数除法的意义

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

三、分数除以整数的计算法则

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的`正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

四、课堂练习

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数的除法的教案篇4

教学目标

使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。

教学重难点

进一步掌握分数除法的计算方法。

教学准备

教学过程设计

教学内容

师生活动

教学过程

一、揭示课题

二、计算练习

三、综合练习

四、课堂。

五、作业

1、复习法则。

问:分数除法要怎样计算?

2、计算:

5/7÷1014÷413÷8/9

三人板演。

3、练习八17

上下练习,说说是怎样想的。

问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?

4、练习八18

学生口答,选择说怎样算的?

1、练习八19第一行

四人板演;计算时说明要注意的约分等问题。

2、练习八20

说说已知什么数量,要求什么数量。

练习计算。

口答算式与结果,让学生说说各按怎样的数量关系列式。

3、练习八21

问:解答这道题的数量关系是什么?

学生解答。口答算式。

为什么3/4×2/5来计算?

3、口答。

根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。

(1)桃树占果树总棵数的`2/5。

(2)三好学生占全班人数的3/20。

(3)修好了一条路的3/7。

(4)一堆煤的1/4已经运走。

(5)这批布的2/3是花布。

单位“1”的量×几分之几=几分之几的对应数量

练习八19第二、三

课后感受

本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。

分数的除法的教案篇5

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的'积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

分数的除法的教案篇6

教学目标:

能力目标:培养学生动手动脑能力,以及计算能力。

知识目标:

体验整数除以分数的计算方法,并能正确的计算。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

教学重点:整数除以分数的计算方法。

教学策略:

在小组间交流合作的基础上,提高计算能力和计算速度。

教学准备:小黑板

教学过程:

一、导入新课。

前一课我们学习了整数除以分数的`计算方法,你们还记得吗?老师考一考你们好吗,看题目。

6÷=÷=÷=÷=

2÷=÷=÷=÷=

通过提问,全班订正,导入新课。并评价。

二、用小黑板出示下列题目。

3x=x=10x=25x=

提问学生解方程的规律,并指名说一说第一小题的解法。

其它题目独立作,全班订正。

三、课本第三题

指名说出题目的意思,然后解答,全班判定。

四、第四题

1、先独立计算,全班订正。

2、小组间交流发现了什么规律。

3、全班交流。

4、教师小结。

板书设计:

整数除以分数

除以真分数商大于整数

整数除以分数除以1商等于整数

除以假分数商小于整数

分数的除法的教案篇7

教学目标:

使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

教学重点:

整数除以分数的计算方法的'推导。

教学难点:

理解“÷”转化为“×”的转化过程。

教学过程:

一、复习

1、说一说÷18的意义。

2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

(1)口述算式和结果。

(2)板书:数量关系:速度=路程×时间

二、新授

今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

板书课题:一个数除以分数

(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

教师板书:18÷ (出示线段图)

(2)推导18÷的计算方法。

引导学生分两步进行计算

第一部分:求小时行多少千米。

提问

1)、小时里面有几个小时?

2)、2个小时行驶多少千米?

3)、1个小时行驶多少千米?即小时行驶多少千米?

明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

提问

1)、1小时里面有几个小时?

2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

明确

1) 为1小时5个小时,所以,要算18××5,也就是18×。

2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

根据上面的推想,板书:18÷=18×,=45千米

答汔车1小时行驶45千米。

强调

1)18÷不便于直接除,把它转化乘法。

2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

3)是的倒数,即的倒数是。

2、小结:引导学生归纳整数除以分数的计算方法。

板书:整数除以分数可以转化为乘以这个数的倒数。

三、巩固练习

1、在( )里填上适当的分数,使等式成立。

15÷=15×( )10÷ =10×( )

8÷=8×( ) ÷9=×( )

2、列式计算。

(1)一堆煤,每次用去 ,多少次才能用完?

(2)王晶小时做15朵花,1小时做多少朵花?

3、教科书第29页的“做一做”

四、作业 练习八第1——4题。

分数的除法的教案优质7篇相关文章:

燕子的教案优质8篇

蝉的教案反思优质6篇

小食品的安全教案优质8篇

伞的中班教案优质8篇

鱼的分类教案优质8篇

小班关于鱼的教案优质8篇

垃圾分类的教案优质8篇

有趣的船小班教案优质6篇

克的初步认识教案优质6篇

中班有关书的教案优质8篇

分数的除法的教案优质7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
82381