教案的编写过程促进了教师对课程内容的深入思考,详细的教案有助于教师设定合理的评估标准,确保学生的学习成果得到有效反馈,下面是骄才站小编为您分享的小数乘整数教案优质8篇,感谢您的参阅。

小数乘整数教案篇1
教学目标:
1、使学生进一步理解和掌握小学数学里学过的运算顺序,提高计算能力。
2、培养学生合理、灵活地进行运算的能力。
教学重点:
使学生进一步理解和掌握小学数学里学过的运算顺序,提高计算能力。
教学难点:
培养学生合理、灵活地进行运算的能力。
教具准备:
小黑板、电脑课件、长方形纸条。
教学过程:
一、复习运算顺序:
同学们,在我们的数学学习中天天都要和数做朋友,今天老师也带来了一些数,看看有哪些数?
出示一组小数和整数:
2.650.90.5
3.71.30.2812
0.361.568.127.5
1、复习四则运算
(1)(学生口答,老师相机板书:整数小数)
(2)请你从这几个数中选择两个数组成一道算式并且口算出结果。(学生口答结果)
(3)问:在我们刚刚口算的算式里,有哪些运算?(学生口答,教师板书:加法减法乘法除法)
这就是我们学习过的四则运算,在这四则运算里加法和减法是一级运算(板书),乘法和除法是二级运算(板书)。
2、复习四则混合运算顺序:
(1)请同学们从这几个数中选择三个或四个数组成一道综合算式。(可以运用小括号和中括号)
把综合算式写在课前准备的纸条上。
(2)教师有针对性的选择六道算式展示在黑板上。请同学们把这六道综合算式分分类。(四人小组讨论)
(3)学生汇报,教师整理板书
从左往右先算二级运算先算小括号里的
(4)每个同学从第一行的三题中选择自己喜欢的.一道做在练习纸上。(三名同学板演,其余学生做在练习纸上。)`
(5)集体订正。
3、小结揭题
``这就是我们今天要复习的整数、小数的四则混合运算。那你觉得在计算时应该注意些什么?(强调运算顺序)
4、复习简便计算:
(1)出示(8.11.3+8.13.7)5(也是黑板上的最后一道算式)
(2)先让同学自己完成,比一比谁做的最快。
(3)集体汇报:请做的快的同学来介绍方法。
教师强调:计算时,要认真审题,灵活选择合理的计算方法。
5、练习:
7.8+4.3-6.4+1.71.22.70.54.8
(2.5-2.50.6)418-3(2-0.8)
一组一题做在练习纸上,投影仪集体订正。
二、巩固练习:
同学们,学到这里你们有点累了吧?下面我们来做一做身体健康操。
第一节:小嘴巴说一说
请你说一说下面各题的运算顺序:
3.6[(1.2+0.5)5]
0.750.30.5-3.2
7-0.5+14+0.83
3.60.4-1.25
第二节:小眼睛找一找
下面的计算对吗?
0.2540.254
=11
=1
7.40.65+10.5
=0.481+10.5
=10.981
第三节:小手做一做
1、从21.3与8.75的和里减去0.75,结果是多少?
2、16除以2的商加上3.5。和是多少?
第四节:小脑袋估一估
一块梯形的土地(如图),它的面积是多少平方米?
(先说说大约是几十平方米,再计算,得数保留整数)
三、走进生活,拓展练习。
其实,在我们的身边处处有数学,下面就让我们走进生活看一看。
五一长假就要到了,我们作为家里的小主人该去超市选购一些食物用来招待客人了。
今天妈妈给了你们每人50元钱,你们来到了超市,你们准备选购哪些食物呢?把你的购物清单写在练习纸上。(出示食物的图片和单价)
我们比比谁是最棒的小当家!
小数乘整数教案篇2
教学内容:课本的例1和“做一做”,练习一的第1~4题。
教学目的:
1.使学生理解小数乘以整数的意义,掌握小数乘以整数的计算法则。
2.培养学生的迁移类推能力。
教具准备:将课本的“复习”中的表格写在小黑板上。
教学过程:
一、复习。
1.复习整数乘法的意义。
问:整数乘法的意义是什么?(让两个学生说一说整数乘法的意义)
在乘法算式中各部分的名称分别叫什么?(被乘数、乘数、积)
还可以叫什么?(因数)
2.复习整数乘法中因数变化引起积变化的规律。
出示小黑板的复习题。一名学生在黑板上做,其他学生打开教科书,在书上自己独立做。教师巡视,集体订正。
订正后,教师引导学生观察、比较:
第2栏与第1栏比较,因数有什么变化?积有什么变化?
第3栏与第1栏比较,因数有什么变化?积有什么变化?
第4栏与第1栏比较,因数有什么变化?积有什么变化?
反过来比较:
第3栏与第4栏比较,因数有什么变化?积有什么变化?
第2、1栏与第4栏比较呢?
说明:这个规律非常重要,对我们以后的学习会有很大的帮助,同学们一定要好好地掌握。
二、新课。
1.教学小数乘以整数的意义(例1的前半部分)
教师出示例1。
想一想:这道题可以怎样解答,该怎样列算式?(多让几名学生回答,教师把学生的列式写在黑板上。)
6.5×5表示什么意思?(5个6.5。)用加法算是:6.5+6.5+6.5+6.5+6.5
还表示什么?(求6.5的5倍是多少。)
讲解:过去我们学习的是整数乘以整数,今天我们列的乘法算式是小数乘以整数。同学们想一想,小数乘以整数的意义同整数乘法的意义比较相同不相同?(相同)
让两名学生说一说小数乘以整数的意义。教师板书:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.教学小数乘以整数的计算法则(例1的后半部分)
问:我们已经知道了小数乘以整数的意义与整数乘法的意义相同,那么该怎样计算呢?想一想,能不能把这些小数乘法转化成整数乘法呢?
先复习一下小数点位置移动引起小数大小变化的规律,让两个学生说一说。
讲解算法:小数乘法可以依照整数乘法用竖式进行计算。
板书:
如果把这个式子变成整数乘法,就要去掉小数点,那么这个式子就变成了什么?(65×5)教师在小数乘法的竖式右边写出整数乘法的竖式。
引导学生讨论:
“6.5变成65相当于小数点怎样移动?因数扩大了多少倍?”(小数点向右移动一位,因数扩大了10倍。)板书:
“另一个因数变化了没有?(没有)
“一个因数扩大了10倍,另一个因数没有变化,那么新的积与原来的积比较发生了什么变化?(积比原来扩大了10倍。)
“那么要得到原来的积就要把新的积怎么样?(缩小10倍)。板书:
“要把325缩小10倍,就要把小数点怎样移动?”(小数点向左移动一位。)
板书:
“所以6.5×5的积应该是多少?(32.5)。
讲解:“买5米花布要用多少元?(32.5元)。在横式上写出得数,注明单位史称,板书答案。
引导学生回顾一下小数乘以整数的计算方法,使学生明确:先把被乘数看作整数,被乘数扩大10倍,这样乘出来的积也扩大10倍,要求原来的积,就要把乘出来的积再缩小10倍。
3.基本练习。
做教科书下的”做一做“。
学生独立计算,教师巡视了解全班学生掌握的情况,以及存在问题。
集体订正时,让两名学习好的学生说一说是怎样想。特别要让学生比较一下这道题与例题的异同。(这道题被乘数有两位小数,都是小数乘以整数。)使学生认识到积的小数位数与被乘数的小数位数应该一样。
三、巩固练习。
1.做练习一的第1题。
指名学生说一说每个乘法算式的意义。可有意识地让中差生说,并按照下面的问题顺序回答:读算式;说出是什么数乘以什么数;算式的意义是什么。
2.做练习一的第2题。
让学生再说一说小数乘以整数的意义。
3.做练习一第3题的前两道小题。
学生独立计算,对学习有困难的学生进行个别辅导。集体订正时,可让计算有错误的学生说一说是怎样算,使他们知道自己错在哪里。
四、。
引导学生根据例题与练习中被乘数的小数位数的不同情况,小数乘以整数的计算方法;小数乘以整数,先按照整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位点上小数点。
五、作业。
练习一的第3题的后四道小题,第4题。
小数乘整数教案篇3
一、教学内容
浙教版《义务六年制小学数学课本》五年级上册p3页
二、教学目标
1、使学生理解一个数乘小数的意义就是求这个数的十分之几、百分之几、千分之几……
2、掌握整数乘小数的计算方法,并能正确地进行计算,数学教案-整数乘小数。理解积和第一个因数的大小关系,并能正确地进行判断和估算。
3、养成良好的规范书写的习惯。
三、教学过程
预设学习材料与教学路径
预设学生活动
与备选方案
环节意图
与实施要求
一、准备导入:
1、复习小数的意义
说说下列小数的意义:
0.5 0.2 0.123 0.56
2、出示例题
一种抛毛线每千克售价78元,买2千克要多少元?买0.5千克要多少元?买0.1千克呢?
学生列式不计算。
3、揭题:今天继续来学习小数乘法中的另一类,一个数乘小数。
二、展开教学
1、分别说说这三个算式所表示的意义,可以讨论一下。
2、揭示并板书意义
3、请在小组中相互编题来考考同学,说说意义,小学数学教案《数学教案-整数乘小数》。之后抽一个小组汇报一下编的情况和说的情况。
4、尝试用竖式来计算一下
5、反馈尝试情况:说说你是怎样计算的?为什么要这样计算?
格式上有什么要求?投影学生在草稿上的格式。
6、用竖式规范地计算下面各题:
35×1.2 35×0.9
35×1.1 35×0.6
学生板演
比较积与第一个因数的大小,你发现了什么?
三、练习:
完成课本中的“练一练”各题
四、小结:说说你有何收获?
学生对第一个算式所表示的意义肯定能说,对第二个算式不一定会说,如果学生能说,则让学生说一说,当说不明白时,则建议用合理的方式来表示(线段图、画图等)
如果学生说不出来,则教师用线段图的`方式来帮助学生理解其意义。
让学生能顺利理解一个数乘小数的意义作好铺垫。
让学生来说说意义,则是了解学生对这一部份的知识了解程度,有利于教师进行针对性的教学。
课本中的练习很好,应该充分利用。
教学反思:
数学教案-整数乘小数
小数乘整数教案篇4
教学目标
(一)理解小数乘以整数的意义,掌握小数乘以整数的计算方法。
(二)理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”的计算方法的道理。
(三)培养抽象、概括的能力。
教学重点和难点
掌握小数乘以整数的计算方法,并理解“被乘数有几位小数,就从积的右边起数出几位,点上小数点”计算方法的道理。
教学过程设计
(一)复习准备
1.先说出下列算式的意义,再口算:
17×2 5×16 4×30 126×1
56×10 28×100 15×4 65×0
小结:
(1)整数乘法的意义是什么?
(2)整数乘法的计算方法是什么?
2.口算下列各题,并观察积的变化有什么规律?
观察思考:
(1)从左往右看,积有什么变化?为什么会发生这样的变化?积的变化有什么规律?
(2)从右往左看,积有什么变化?积的变化有什么规律?
小结:积的变化规律是怎样的?(在乘法里,一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍、……积也扩大(或缩小)10倍、100倍、1000倍、……)3.填空:
(1)1。5扩大10倍是( );
(2)2。25扩大( )倍是225;
(3)1。2扩大( )倍是12;
(4)38缩小10倍是( );
(5)85缩小( )倍是0。85;
(6)270缩小( )倍是27。
(二)学习新课
1.创设情境
同学们,你们经常为家里买东西吗?你会算帐吗?请举例。
一天,妈妈要小芳去买5米花布,小芳来到商店,选中了一种带有弯弯的.月亮和星空的图案的花布。每米6。5元,买5米要用多少元?谁来帮小芳算算?(教师口述,同时板书例1。)
2.引导发现
(1)通过列式,理解小数乘以整数的意义。
学生根据题意列式:6。5+6。5+6。5+6。5+6。5。
这个加法算式有什么特点?(加数相同。)
根据这一特点,你还能用别的方法表示吗?
6。5×5。
6。5×5表示什么?(6。5×5表示5个6。5的和或6。5的5倍。)
你能说出下列算式表示什么?
2。7×5 5。8×4 3。54×2 1。63×11
小结:
小数乘以整数的意义是什么?(求几个相同加数的和的简便运算。)
小数乘以整数的意义与什么算式的意义相同?(小数乘以整数的意义与整数乘法的意义相同。)
说明整数乘法的意义也适用于小数乘以整数。
(2)计算:
思考、讨论:6。5×5应如何计算呢?
提示:能不能把6。5转化成整数呢?转化后积会发生什么变化?
学生试做。
用投影打出学生做的过程,并由学生讲解:
①6。5×5=6。5+6。5+6。5+6。5+6。5=32。5(元);
讨论以上几种算法,哪种对,哪种不对,为什么?(①结果正确,方法不简便;②不对,因为325是65×5的积,不是6。5×5的积;③对,把6。5扩大10倍是65,用65×5=325,积325也扩大了10倍;要使积不变,325必须要缩小10倍,才是6。5×5的积。)
学生重点讲解法③的道理,教师板书:
(先把6。5扩大10倍成65,再按照整数乘法的计算方法计算65×5=325,再把乘出来的积325缩小10倍是32。5。)
答:5米要用32。5元。
小结:
计算小数乘以整数的思路是什么?(把小数乘法转化成整数乘法计算。)
转化的方法是怎样的?(先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。)
(3)填空,并讲出道理。
(4)小结,引导学生得出计算方法。
①观察以上各题,你发现积的小数位数与什么有关?有什么关系?为什么?(积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。)
②小数乘以整数的计算方法是什么?
计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.说出下面各算式中积应有几位小数:
25。4×36 2。37×125 0。15×3
1。032×24 3。506×1 0。017×21
2.在积的适当位置上添上小数点:
观察:积的小数位数是否与被乘数的小数位数相同?为什么?(积中小数部分末尾的零省略不写,被划去了,积的小数位数与被乘数的小数位数不同。)
3.看谁算得又对又快。
25×4= 18×5= 2。5×4= 1。8×5=
0。25×4= 0。18×5= 0。025×4= 0。018×5=
注意:计算的结果,小数部分末尾的零要去掉,把小数化简;小数部分位数不够时,要用“0”占位。
4.列出乘法算式,再算出来。
(1)14个9。76是多少?
(2)6个3。25是多少?
(3)5。24的5倍是多少?
(4)1。6的8倍是多少?
5.课后作业:p4:1,2,3,4。
课堂教学设计说明
小数乘以整数是在整数乘法的意义和法则的基础上进行教学的。为了使学生能够顺利地利用知识的迁移规律,掌握小数乘以整数的意义和计算方法,我们在复习中设计了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律以及积与因数的变化规律。
在新课的引入上,注意联系学生的生活,使学生很自然地参与到新知识的探索之中。通过带有思考性的问题,引导学生思考,并大胆让学生尝试,讲解、讨论,把学生引导到算理的探究过程之中。在学生理解算理的基础上,通过观察比较总结出计算方法,提高学生的抽象、概括能力。
练习的设计由易到难,思维过程既有展开,又有压缩,突出重点和难点,有助于学生形成技能技巧,提高学生的计算能力。
板书设计
小数乘以整数
例1 花布每米6。5元,买5米要用多少元?
(1)6。5+6。5+6。5+6。5+6。5
=32。5(元)
(2)6。5×5=32。5(元)
答:买5米要用32。5元。
意义:求几个相同加数的和的简便运算。
计算方法:先按照整数乘法的法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
小数乘整数教案篇5
教学内容:
简便计算第39页例4练习十第5-10题
教学要求:
使学生进一步掌握整数、小数四则混合运算的顺序,熟练地进行有中、小括号的运算,在混合式题运算中能自觉地使用简便计算,提高计算的速度。
教学重点:
混合运算式题中怎样使用简便计算。
教学难点:
同上。
教具准备:
小黑板,卡片,幻灯。
教学过程:
一、复习
1、填空:
()叫做第一级运算。乘法和除法叫做()。一个算式里,如果只含有同一级运算,应();如果有中、小括号的,要先算(),再算();遇到除法的'商除不尽时,一般()。
2、计算:(指名板演,其余座练)
7.4×1.3-4.68÷0.9
[10-(0.2+16.7×0.7)]×0.01
教师针对性评讲,着重让学生说说脱式时哪一步用约等号,哪一步用等号,为什么?
3、口算:说出下列算式根据什么定律,性质进行简算。
7.5-0.26-1.74+2.50.25×13×4
18-2.7-9.332×0.125
3.5×3+3.5×74.5×20-3.5×20
二、新授
1、谈话引入。
在四则混合运算中,有时也可以应用运算定律,使一些计算简便。(板书课题)
2、教学例4。
看一看,这道算式有什么特点?运用什么运算定律,可以使计算简便?
试一试,让学生自己算,教师巡视。指名板演。
集体订正,教师指出;这道题虽然不能把整个题简便计算,但是式子里有两步可以简便,能简便计算的要尽量使用简便方法。
看课本第39页的例4,提问:虚线框框里的算式表示什么?
3、做一做第39页
指名板演,其余的做在本子上,教师巡视,做完后集体评讲。要求学生在计算时应该随时注意,能简算的自觉简算。
三、巩固练习
1、练习十第5题
先独立练习,再集体订正。订正时让学生说一说自己是怎样算的,有没有简便算法。
2、练习十第7题
这三道题,主要训练学生学会列综合算式和使用括号。先让学生独立列式,再集体订正。
3、练习十第8、9、10题
指名分析题目,然后让学生独立列式解答。
四、课堂(略)
五、课堂作业练习十第6题
板书设计:
整数、小数四则混合运算
小数乘整数教案篇6
设计说明
?数学课程标准》中指出:“有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者和合作者。”基于这样的理念,现将本节课的教学设计做以下简要说明:
1.创设情境,让学生易上手。
新课伊始,让课堂走近学生的实际生活,以熟悉的“买风筝”活动为背景,把生活中的问题转化为数学问题,在解决实际问题的过程中自然地引出了小数乘整数的学习内容。让学生根据自己的经验进行计算,初步感知小数乘整数与整数乘整数的联系。
2.自主探究,对学生的探究活动敢于放手。
在例2的教学中充分放手,让学生自主探究。先让学生独立计算、交流算法,然后通过课件的动态演示帮助学生深入理解算理并总结小数乘整数的计算方法。
3.循序渐近,使学生成为学习小能手。
设计不同层次的练习题,逐步加深学生对小数乘整数的计算方法的理解,强化重点,突出难点,提高学生的学习兴趣,让学生感受到学好数学可以解决生活中的许多问题。
课前准备
教师准备ppt课件、课堂活动卡、学情检测卡
注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。
教学过程
⊙情境引入
(课件出示放风筝图片)师:瞧!文化广场真热闹,有好多小朋友在放风筝,你们想玩吗?(课件出示卖风筝画面)从图中你发现了哪些数学信息?
设计意图:通过生活情境的'引入,调动了学生的学习兴趣,渗透了数学来源于生活,应用于生活的思想,并为学生自主探究小数乘整数的计算方法提供了条件。
⊙自主探索
1.了解小数乘整数的意义,尝试计算。
(1)理解题意,列出算式。
师:有3个小朋友也想去放风筝,他们都想买蝴蝶风筝,请你帮他们算一算,买3个蝴蝶风筝需要多少钱?你能列出算式吗?
(学生思考并汇报:3.5×3)
师:为什么这样列式?说一说你的想法。
预设生1:根据数量关系“单价×数量=总价”列式为3.5×3。
生2:求买3个蝴蝶风筝需要多少钱,就是求3个3.5是多少,用乘法计算,列式为3.5×3。
师:仔细观察这个算式,它和我们以前学过的算式有什么不同?
预设生:两个因数一个是小数,一个是整数。
师:这就是我们这节课要学习的内容。(板书课题:小数乘整数)
(2)尝试计算。
师:请你尝试用自己的方法计算出3.5×3的得数。
(学生以小组为单位进行合作、探究)
(3)展示方法。
方法一3.5+3.5+3.5=10.5(元)
方法二3.5元=3元5角3元×3=9元
5角×3=15角
9元+15角=10元5角=10.5元
方法三3.5元=35角35×3=105(角)
105角=10.5元
师小结:我们在求买3个蝴蝶风筝需要多少钱时,可以用小数连加来解决,也可以把3.5元化成元、角来解决,还可以把元转化成角用乘法竖式计算来解决。
设计意图:鼓励、启发学生运用原有的知识进行尝试计算,初步感知小数乘整数与整数乘整数的联系。
小数乘整数教案篇7
教学目标:
1、依托现实情境,引导学生运用转化思想,沟通小数乘整数与整数乘法之间的联系和区别,从而理解小数乘正数的算理和计算方法。
2.自主探索小数乘整数的计算方法,在观察比较,合作交流中经历知识发生发展的全过程,让学生能正确地计算小数乘整数,提高计算能力。同时培养学生的估算意识和观察、比较、分析概括的能力及知识迁移能力。
3.培养学生的估算意识,渗透转化思想,感受小数乘法在生活中的应用。
教学重点:
理解小数乘整数的算理及计算方法。
教学难点:
理解算理。因数扩大一定倍数,积也会扩大相同倍数,为了使积不变2,就要将积缩小相同倍数。
教学关键:
正确应用因数与积的变化规律进行知识转化。
教学流程设计:
一、复习铺垫
1、0.09米=()厘米3.5元=()角
150千克=()吨 42米 =()千米
2、0.45扩大10倍是( )75缩小它的1/10是 ( )
扩大100倍是( ) 缩小到它的1/100倍是()
扩大1000倍是() 缩小它的1/1000倍是( )
3、0.725去掉小数点,比原来()倍
4、13×12=156
13×120= ( )
13×1200=( )你是怎么想的?
(设计意图:小数与整数的互相转化是学习本课的主要思维方法,而因数与积的变化规律则是转化的主要依据。通过口答练习,为学生探究新知作好知识和思维上的准备)
二、自主探索
一、依托现实情境,初步感悟
1、出示例1情景图,根据信息提出数学问题
选择买3个3.5元的风筝要多少钱进行讨论
(估算大约要多少钱)
2、独立思考,汇报交流
可能会有下列方法:
方法1:连加 。
方法2:化成元角分计算,先算整元,再算整角,最后相加。
方法3:竖式笔算35角×3=105角。
方法4:竖式笔算3.5元×3=10.5元 。
着重请方法4的同学说说是怎么想的。
3、用自己喜欢的方法解决学生提出的其他问题之??
4、小结并揭题:刚才我们在解决买风筝一共用多少钱时,想到了不同的方法。我们发现以元作单位的小数乘整数,可以化成以角或分做单位的整数乘法来进行计算。
(设计意图:依托现实情境,让学生根据生活经验,用不同方法解决现实问题。然后通过对方法4的
着重讨论,在培养学生估算、计算能力的同时,感悟小数成整数还可以先转化成整数进行计算,初步感悟算理和计算方法)
二、自主探究,进一步理解算理,掌握计算方法
1、出示0.72×5
现在0.72不再表示钱数,没有了具体的单位,你还能计算出它的得数吗?
2、学生先独立计算然后小组交流
3、汇报演示。
板演计算过程,呈现思考过程
交流时:(1)估算,得数是否可能正确
(2)重点引导学生说清是怎样把乘数转化成整数的,乘积又是如何处理的,为什么可以这样转化?将思考过 程板演化。(通过交流和板演,在引导学生描述转化过程的同时进一步理解算理,掌握算法。)
(3)指出积末尾的0一般的处理方法。
4、反馈练习。
竖式计算14.5×8 3.06×5(注意末尾0的处理)
5、小结
(设计意图:通过独立思考与合作交流,让学生自主探索, 获取小数乘整数的计算方法,进一步理解算理,掌握算法,提高计算能力。)
三、巩固联系
1、对比练习:做一做1(比较小数乘整数与整数乘法的联系和区别,进一步沟通两者联系,理解算理,提高计算能力)
2、明辩是非:(培养学生认真仔细的良好计算习惯,正确处理积的小数点)
2. 41.3 50.2 5
×6× 3× 8
-------- -----------------
1 2 .4 4 0 .52 0 0
3、笔算。7.08×69.35×8
4、实际问题解决。奉化到宁波40.6千米,来回一趟多少千米?
四、课堂总结
五、趣味练习
根据45×19=855,直接说出下列算式得
45×190 =45×1.9=
4.5 ×19 =4.5×1.9=
0.45×19 = ( )×( )=0.855
(根据因数与积的变化规律填空,前2-4题是对本课的巩固,后两题是拓展提升,运用知识迁移,让学生感受整数乘法与小数乘整数和小数乘小数是一脉相承的。有利于培养学生的众向思维培养。)
板书设计小数乘整数
3.5×3=10.5 0.72×5
3.5 -- -3 50.72 扩大到它的100倍 7 2
× 3×3 × 5 × 5
10.5元 ----105角 3.60缩小到它的1/100360
课后反思 :
这节课是小数乗整数的第一课时,主要是让学生理解小数乗整数的意义,掌握小数乗整数的计算法则,培养学生主动获取新知的能力。为了能让学生轻松的掌握新知,我努力的做到了以下几点:
一、复习了整数乘法的意义及整数乘法中由因数变化引起积的变化规律,为学生学习“小数乘整数”做好了铺垫,尤其是掌握了积的变化规律,为学习小数乗整数的算理有很大的帮助。
二、创设了一个“购买风筝”的情境,从而激发了学生的学习兴趣。在解决实际问题中自然的引出了小数乗整数的学习内容,使学生感到亲切自然,学生在浓厚的兴趣中探索新知。
三、在学习过程中,我注重学生的独立思考,如解决实际问题时,我让学生小组合作思考交流解决的方法,在师生的交流学习中,让学生充分的表达自己的观点与计算方法,从而得到许多有创造性的解决办法。然后在老师的启发引导下帮助学生较好地理解小数乘整数的算理及方法。
总之,这节课更关注学生的学习过程,在思考交流的学习中,给不同的学生思维发展的空间,促进了学生的发展。
小数乘整数教案篇8
教材说明
学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间和路程之间的数量关系。两个物体运动的情况是多种多样的,有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中又以“相遇求路程”和“相遇求时间”两种为主。关于两物体相遇,求其中一个物体的运动速度的应用题,放在后面,用列方程的方法解答。
学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。为此教材首先出现一个准备题,通过图示来说明什么叫做“相向而行”。接着通过列表分析了每经过1分、2分、3分后,两个人之间距离的变化,让学生理解什么是“相遇”。然后再通过例3、例4教学“相遇求路程”和“相遇求时间”的应用题。
在例3中,教材通过图示着重说明了小强和小丽两人走的路程的和就是他们两家之间的路程。但是解答方法可以不同。第一种解法是先求两人各自走多少米,再加起来。这种解法思路较清楚,学生容易理解。第二种解法稍难一些,但是有了准备题做基础,学生就能比较好理解为什么要先求每分钟两人所走的路程的和。这种解法不仅比第一种解法简便,而且是教学例4的基础。
在例4中,教学“相遇求时间”的应用题。这恰好是利用例3中的数量关系进行逆运算。教材没有再详细地进行分析,只是提出启发性问题,让学生想应该怎样解答。
在练习十四中,除了编排了相向运动的相遇问题以外,还有一些稍有变化的题目。例如:相背行驶、不同时出发、间接给出某一车的速度等,为的是扩展学生的经验,让学生更多地熟悉有关两个物体运动变化时的数量关系,同时也防止学生在解题时死套类型或公式。
教学建议
1.这部分内容可以用3课时进行教学。完成练习十四中的习题。
2.教学例3之前,可以先复习速度、时间和路程之间的数量关系。然后说明,以前我们都是研究一个物体运动的速度、时间和路程的关系。现在我们要研究两个物体运动的速度、时间和路程的关系。接着,出示第54页上面的准备题,通过画图或者让两个学生演示,相对走一走,说明什么叫做“同时出发”和“相向而行”。再结合图示或学生的演示,看每分两人距离的变化,让学生在图下面的表中填写数目。学生填完表以后,教师可以组织学生分析表中各个数量之间的关系,弄清两人在相对行走的过程中,经过1分、2分、3分后,每个人走过的米数和两人之间的距离有什么关系。最后再弄清什么叫做“相遇”,相遇时,两个人走过的路程和两家之间的距离有什么关系。
3.通过例3教学相向运动求路程的应用题时,可以画出线段图来帮助学生弄清题意,使学生看到小强和小丽在相遇时两人走过的路程的和,就是他们两家之间的'距离。然后,可以提问:“怎样才能求出两人走过的路程的和呢?”可以先让学生试着列式计算,然后组织讨论。使学生明确,先分别求出两人各自走过的路程,也就是各自从家到学校的路程,再加起来就是两家之间的路程。教学完第一种解法后,可以让学生联系准备题中分析过的数量关系想一想,在这题中由于两人同时出发,那么每经过1分钟两人之间的路程有什么变化,到相遇时怎样?求两家之间的路程还可以怎样算?引导学生列出第二种算式计算。做完后可以让学生说一说自己是怎样分析和解答的。在这之后,还可以让学生比较一下两种解法,想一想它们之间有什么联系。从数量关系上看,第一种解法是用两人各自的速度乘时间,得出两人各自走的路程,然后再加起来;第二种解法是根据两人同时出发后相遇,时间相同,可以先算出两人每分钟一共走多少米,也就是“速度和”,再乘时间。从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。然后,通过例3下面“做一做”中的习题和练习十四中第1~3题,使学生巩固所学的知识。
4.通过例4教学相向运动求相遇时间的应用题。教学时,可以先让学生自己解答复习题。复习前面刚学过的两人相遇求路程的应用题。然后再把条件和问题改成例4,并画图表示出条件和问题,然后引导学生想,已知两地相距270米,又知道两人各自的速度,能不能求出相遇的时间?并且联系例3的第二种解法,启发学生想,“每经过1分钟两人之间的路程有什么变化?”“到相遇时两人共走了多少米?”“那么经过多少分钟两人可以走完这270米,可以怎样计算?”让学生试着列式解答。然后找几个学生说一说自己是怎样分析解答的。在学生做完例4下面“做一做”中的习题以后,订正时也要找几个学生分析一下自己的解法。
小数乘整数教案优质8篇相关文章: