要想使教案更具挑战性,教师们可以设置适当的学习难度,教师在制定教案时,往往会关注课程的各个环节与相互关系,以下是骄才站小编精心为您推荐的数学七年级下教案优质5篇,供大家参考。

数学七年级下教案篇1
教学目标
?知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
?过程与方法目标】
?情感态度价值观目标】
通过画数轴,给学生以图形美的,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点
?教学重点】
数轴的意义及作用。
?教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
?数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;
结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:
共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;
不同点:温度计是竖直的',方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)
(1)数轴的构成三要素:原点、方向、单位长度;
(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;
5、归纳
(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。
二、例题分析
例1.先画出数轴,然后在数轴上表示下列各数:
-1、5,0,-2,2,3
例2、数轴上与原点距离4个长度单位的点表示的数是。
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
数学七年级下教案篇2
一、教学目标
?知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
?过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
?情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
?教学重点】
数轴的三要素,用数轴上的点表示有理数。
?教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
数学七年级下教案篇3
这个学期我任教初一1班、2班的数学教学工作。为了使工作更加地到位、细致,我针对这个学期的工作制定教学工作计划如下:
一、指导思想:
本学期我以“促进课堂改革,提高教学实效性”为工作中心,力争让每个学生在原有基础上都有所提高。认真贯彻落实学校的理念,课堂上以学生为主体,大胆开创课堂教学方法,争取做一名优秀的数学老师。
二、工作目标:
通过本期教学,使学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。培养一批数学尖子,能掌握科学的学习方法。不及格人数较少。形成良好学风。形成良好的数学学习习惯。形成融洽的师生关系。使学生在德、智、体各方面全面发展。
(一)、多方面学习,树立新理念
开学初就要认真通读数学新课程标准,潜心研究,反复揣摩。以《数学课程标准》基本理念为依据是用好教材的前提,所以一定要认真领会《标准》编导意图,去指导教学实践,以便采取灵活、有效的教学方法,使数学教学真正面向全体学生,促进学生全面、持续、和谐的发展。
(二)、掌握学生心理特征,激发他们学习数学的积极性。
学生由小学进入中学,在心理上发生了较大的变化,开始要求“独立自主”但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣。同时在言行上,教师要切忌伤害学生的自尊心。如初一学生普遍保留小学阶段积极举手发言的良好习惯,面对孩子们这种学习热情,教师应该表示赞赏,给予肯定,同时尽可能让更多的学生有轮流发言的机会。
(三)、以课堂教学为主阵地
(1)在教师这方面,首先做到要通读教材,驾驭教材,认真备课,认真备学生,认真备教法。对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,知识的`达标程度教师更要掌握,使优生吃饱,差生吃好。在学生方面,把学生按座次和成绩分成学习小组,选出小组长,在课堂上发挥小组的集体力量,这样用辅优,帮差,带中间的方法来大面积提高教学质量。
(2)重视学生能力的培养。
在教学中尽量做到“学生自学能学会的不讲”;“在教师的引导下能自己总结的不讲”;“在教师的引导下学生互相帮助下能学会的不讲。”从而培养学生的自主、合作、探究能力。充分发挥学生的主体作用,把学生的潜能全部挖掘出来。
(四)、指导学生运用科学的学习方法
小学阶段科目少,内容浅,学生学习方法即使差一些,只要用心,用功,总可以应付。但是一进中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我向学生介绍的方法是:“两先,两后,”既先预习,后听课;先复习,后做作业。也就是引导学生课前做好预习,发现问题,带着问题有目的性的听课,效果会更好。课后注意及时复习巩固以及经常复习巩固,使学过的知识达到永久记忆,遗忘缓慢。如果学生能真正按照此方法,再加之自己特有的经验,一定是学起来轻松愉悦,成绩优异的。
三、工作进程安排
第一章、有理数15—18课时
第二章、代数式8—10课时
第三章、一元一次方程12—14课时
第四章、几何图形初步13—15课时
重点把握第—、二、三章的知识内容,努力钻研教材与教法。激发学生学习数学的兴趣,使学生主动去探讨数学问题,紧密联系实际问题,活跃课堂氛围。让学生热爱数学,并且掌握一定的学习方法,提高平均分和优秀率上涨的幅度。
总之本学期的教学工作需要学习的地方比较多,更多地向经验丰富的同行学习,并在今后的实际工作中进一步补充和完善。
数学七年级下教案篇4
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法.
教学难点:平方根与算术平方根联系与区别.
三、教学方法
讲练结合.
四、教学手段
多媒体
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空
1.()2=9;2.()2 =0.25;
5.()2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.
由练习引出平方根的概念.
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).
用数学语言表达即为:若x2=a,则x叫做a的平方根.
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根.
由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
()2=-4
学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数.
2.0有一个平方根,它是0本身.
3.负数没有平方根.
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算.
由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.
练习:1.用正确的符号表示下列各数的平方根:
①26②247③0.2④3⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
数学七年级下教案篇5
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.
三、选择题
1.如图3所示,下列条件中,不能判定ab∥cd的是( )
a.ab∥ef,cd∥ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
a.由∠1=∠6,得ab∥fg;
b.由∠1+∠2=∠6+∠7,得ce∥ei
c.由∠1+∠2+∠3+∠5=180°,得ce∥fi;
d.由∠5=∠4,得ab∥fg
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的'位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么ad∥bc;如果∠9=_____,那么ab∥cd.
(第1题) (第2题)
2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
a.因为∠1=∠4,所以de∥ab
b.因为∠2=∠3,所以ab∥ec
c.因为∠5=∠a,所以ab∥de
d.因为∠ade+∠bed=180°,所以ad∥be
2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )
a.∠2=∠4 b.∠1=∠4 c.∠2=∠3 d.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点b在ac上,bd⊥be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.
数学七年级下教案优质5篇相关文章: