我们在写教学反思的时候,可以找出自己教学中的优势,编写教案有助于教师进行系统的教学反思和总结,下面是骄才站小编为您分享的圆柱与圆锥教学反思6篇,感谢您的参阅。
圆柱与圆锥教学反思篇1
“数学是思维的体操”,数学课堂是培养学生思维能力的主阵地。因此,教学中,教师常常把重心放在拓展学生思维的空间上,常常更多地关注解题方法的优劣、解题过程的繁简。计算则通常归于一句话:计算要细心,多练自然准确率就高啦。其实不然,某些计算的难度已经影响了思维的训练及效果,譬如人教版第十二册第二单元的“圆柱、圆锥”。这部分内容素以计算繁杂而成为教学中的一大令人头疼的章节,相信每一位经历过的教师都有同感。
因为已知了这个教学难点,许多教师和我一样,会有意识地对这个难点进行突破,让学生把3.14×1到3.14×9的得数背下来,并指导学生如何运用背的结果。还练习了由3.14×1你还能想到哪些算式的结果,拓宽3.14×1到3.14×9计算结果的运用范围。但在教学圆柱的表面积、体积的计算时,学生还是错误百出。在订正过程中,有些学生因此对正确的列式产生了怀疑,甚至动摇了对学习这部分内容的信心。作为教师,面对这种状况,心里很不是滋味,不免对自己的“教”进行一番审视,有些方面还真需要改进。
一、计算圆柱的侧面积、表面积、体积,圆锥的体积,如果用综合算式计算,算式有时很长,特别是半径或直径未知时。
我以前较注重要求学生用综合算式来解答,这样对列式的正确与否一目了然。事实上这样要求不但增加了学生思维的难度,同时也增加了计算的难度。思维能力上的难度体现在根据公式求圆柱的'表面积、体积时,有些条件没有直接告诉,需要先求出中间数。如已知底面直径和高,求圆柱的表面积,这里需要先求出底面周长与半径,再求出侧面积与底面积,最后再求出表面积。教师眼中比较简单的问题,对学生来说由于中间问题多而显得思维难度大,如果我们一开始认识不到,不能降低要求,帮助学生用分步列式的方法计算,无形中增加了学生的难度。教材中的例题就是分步列式,是有良苦用心的。更何况在解决实际问题时,还要考虑问题求的是侧面积、表面积、体积中的哪一种,如果求的是表面积,又应该是由哪些面组成的,是一个底,还是两个底,还是没有底。计算上的难度体现在这么长的.一个算式中,如果其中一步列式有差错或一个数据算错,整个算式的结果就会算错。而对待错误,一般的学生特别是后进生很少去对这么长的算式进行整体反思,去改正列式中的一个小错误,或把其中算错的那个数据进行修正,进而用适当微调的方式进行订正,而是全部推倒重算。算的步骤越多,错误的概率就越大,常常越订正错误越多,多次订正得不到正确结论,学生很容易烦燥,并丧失学习的信心。
一个问题中,3.14通常要重复计算多次,结果多是几位小数。如已知圆柱的底面直径是10厘米,高是15厘米,求圆柱的表面积.算式是10×3.14×15+(10÷2)×3.14×2。3.14要分别乘150与50,最后是两积相加。如果我们把3.14看成,在计算时先不与具体的数字进行计算,到最后统一处理,如上面这一题,如果我们这样算:,最后只要算200与相乘,那么只要乘一次3.14,这样就可以减少与3.14相乘的次数,也就减少了出现错误的可能性。因此,我鼓励学生把带入算式中计算,甚至允许如果题目结果没有提出得数保留的要求,最后的结果可以保留,让学生品尝把带入算式计算的好处。在以后的练习中,学生的学习效果出现了明显的好转,自信又回到了学生的身上,同时也培养了学生计算的兴趣及能力。
圆锥的体积等于与它等底等高的圆柱体积的,计算圆锥的体积有几种公式:,首先看能否与其它数约分,如已知圆锥的底面积是20.5平方厘米,高是6厘米,体积是×20.5×6,可先把与6约分。如已知圆锥的底面半径是9厘米,高是5厘米,体积是×3.14×9×9×5,可先与9约分。若无法约分,就先算出其它各数的积,最后再除以3。这样尽量减少小数计算的次数,降低出错的可能性。
从圆柱、圆锥的表面积、体积的教学,我想到了我们教师如何对待学生计算过程中出现的差错。学生在学习过程中出现差错是很正常的。对待学生的计算错误,教师首先保持一个正确的心态,适当提醒学生是应该的,过分从学生身上查找原因,过分责怪学生不认真、不仔细、习惯不好等等,不但不会对解决问题产生丝毫的帮助,反而会使学生失去数学学习的兴趣。教师应充分吃透教材,准确把握教材的意图,善于观察学生,从学生学的过程寻找适合的教法,找到帮助学生克服学习困难的金钥匙。
圆柱与圆锥教学反思篇2
对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。
本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的'长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。
圆柱与圆锥教学反思篇3
复习课在知识整理与查漏补缺的同时应该让学生有些新的收获,而不能让孩子们感觉到知识的重复。我始终在想通过这节课到底让孩子们收获些什么?所以在复习内容的选择上,针对历年毕业考试的数学试卷进行分析,有针对性地选择了三道错率很高的试题进行复习。而这些题所体现的知识点都是圆柱与圆锥的关系,所以这节课的教学设计以圆柱和圆锥体积的关系为教学重点,希望能达到举一反三的效果。
一、习题导入,产生学习需求。
一上课,出示了这样的练习题:一个圆柱和一个圆锥的底面积相等、高也相等,它们的体积之和是12.8立方厘米。那么,它们的体积之差是()立方厘米。通过我已有的经验,此类练习一定有部分学生不知如何入手解题。这时候学生就产生了学习求知的需求,再复习本单元的知识点就顺理成章了。
二、通过整理表格、整体把握知识。
首先让学生在已有知识的基础上,形成单元知识表格图。学生做的表格图内容很全面,注意到知识间联系,但本单元所包含的圆柱和圆锥之间既有联系,又有区别,只有把知识点进行对比、区别,才能更好得掌握知识。其次,学生想不到的就需要老师去点拨、引导。我抓住时机,引导学生形成了规范的表格图,既教给了学生学习的方法,又为以后的'归类复习做了铺垫。
三、系统复习,突破重点。
复习本单元的概念主要是为了突破本节课的教学重点,即圆柱与圆锥的体积关系。因此我在复习整理时利用多媒体课件演示圆柱与圆锥的实物,充分体现了在等底等高的情况下,如果圆锥的体积是单位“1”,那么圆柱和圆锥的体积之和就是4/3;如果圆柱的体积是单位“1”,那么圆柱和圆锥的体积之和就是4倍的关系。梳理知识点之间的联系,我在复习三道练习题时采用了“讲、扶、放”的方法逐步解决问题。针对学生层次不同,首先我采用了“讲”的方法。学生在读完题的情况下,我抽象出线段图体现圆柱和圆锥体积的关系,在通过学生之间的交流,正确率达到了90%左右。第二题采用“扶”的方法,先请好学生讲明题意,说出思考点,再做。第3题可以完全“放”,有了前面的基础,最后一题的正确率有了很大的提高。
四、在层层递进的练习中,培养学生运用知识解决实际问题得能力。
练习分为基本练习题、发展性练习题和拓展性练习题三个层次,基本练习题是应用圆柱和圆锥的关系比较直接计算得题目,因此,我让学生先交流再汇报。发展性练习就有了一定难度,在汇报时,让学生展示出所有的解法,体现解法多样化。拓展性题目是综合运用知识解决问题得题目,属于拔高题,主要是针对优生设计的。通过层层练习,培养学生运用所学知识解决实际问题的能力。
通过本课的教学,我认识到在教学中要注意教材编排的特点,要结合本班学生实际情况进行有机整合,有层次地发挥教师的主导作用,体现学生的主体作用。课堂中也留有一些小遗憾:对于学生当堂课生成的资源没有进行很好的利用,在今后的学习中,还要继续积累经验。培养灵活驾驭课堂的能力。
这节研讨课能够完整的呈现出来,要感谢校长的指导以及数学教研组老师们的帮助,更要感谢孙老师,给予我这样一个交流的机会和对这节课的精心指导,在以后的工作学习中,我会更加努力。
圆柱与圆锥教学反思篇4
本节课是一堂复习课,对学生应该是一个温故而知新的过程。
复习课是帮助学生整理知识、查漏补缺的重要课时。如何在复习课中提高学生的学习效率?是摆在老师面前的一个难题。如果把它仅仅看作是对知识的再现与补缺,简单地将各知识点罗列出来,这样无法使学生系统理解知识,弄清各知识之间的联系和知识的发生过程,而且还会使学生觉得是"炒剩饭"。这样往往会因重复练习而缺少新意。为了避免这种现象,我想如果能够设计有效的教学环节,能切实有效地让学生投入到课堂中并积极参与课堂才会取得事半功倍的效果,教师积极利用各种教学资源,创造性的使用教材,设计适合学生发展的教学过程。因此,在复习基础知识这一教学中,教师应将各个知识点,根据其发生过程和内在联系,通过对知识的分类、整合,构建知识网络,形成知识体系,让学生通过知识网络形成高视角的思维结构建立整体意识和统一观点。为此,我进行了这样几个环节的设计:
通过师生谈话,引入课题。活跃教学气氛,营造轻松愉悦平等的学习氛围。 ?
在本环节我首先提出问题:“你知道圆柱与圆锥有哪些特征?”这是一个简单问题,每个学生都有说的,但又说不完整,其他学生会进行补充,学生的参与度高,积极性高。同时,在互动交往中师生相互启发,相互补充,从而使知识结构不断完善,强化了复习的功能。
整理复习的目的不仅仅在于对知识的整理,还需要通过对知识的整理达到复习与提高的效果。所以最后我安排了一个问题:一个圆柱长10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?本环节是对本节课所学知识的拔高,不仅要让学生回顾本节课所学的主要数学知识和思想方法,还要给学生表达和发展思维的机会,进而提高学生的能力,也使学生认识到整理和复习的重要性。
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:
这节课的设计已改动了多次,通过谈话对圆柱和圆锥从表面到内部的'特征进行再认识,对圆柱的表面积,圆柱、圆锥的体积进行再回顾,有学生对这部分知识进行再整理的过程花费了很多的精力。这样的“再认识”是不是有“新授”的痕迹?
在复习中必要的练习是不可缺少的。我们可以以练习代替复习,可以边整理知识点边穿插练习,也可以在练习中引导学生通过对练习题的分类,整理出知识网络,还可以先梳理沟通知识间的联系,再针对性地进行练习,有时用一节课对某部分知识进行整理和复习后,后面要跟着三四节的练习课复习与练习的关系如何协调才能提高复习的效率也是一个值得研究的问题。
由于教学经验欠缺,这节课还存在很多的问题,如:教学环节连接不够自然,新的教学方法运用不够熟练等等,以后还需要努力学习,提高自己的教学水平。
圆柱与圆锥教学反思篇5
一、这张试卷计算量很大,很多同学两节课做不完试卷,在考试过程中我发现他们都是按题的顺序去做题,比如第五大题计算量是最大的,但是平均到每空却不足1分,后面的应用题最少都是5分一题,计算量不大也不难算,可是因为没有时间,空着,让人非常可惜,所以我在讲评试卷的时候给他们一个建议,先把整张试卷看一遍,在决定怎样做题。
二、计算出错很高,因为要用到3.14,所以很多是小数,有些又是平方,很多同学算错,填空题基本都要计算,算错了就2分没有了,很考验计算的准确率及计算的速度,平时作业如果是笔算的,在这次考试过程中不容易出错,而且快,因为有些他们都背出来了,比如4*3.14=12.565*3.14=15.79*3.14=28.26,16*3.14=50.24,碰到这些根本不用列竖式,而平时不愿意笔算的同学,在这次考试中栽跟头了。
三、不能正确使用公式
求圆柱表面积时忘记用底面积乘2;求圆锥体积时忘记乘三分之一;求表面积或体积时丢掉3。14或忘记乘高
四、公式混淆
如圆柱的侧面积公式与体积公式混淆:一个圆柱的底面直径是10厘米,高20厘米,它的'体积是多少立方厘米?有的学生用3.14×10×20,错用了侧面积公式,有的时候计算体积却运用了侧面积的计算公式。
五、公式的变换不到位,比如一个圆锥的体积是9.6立方厘米,高6厘米,求它的底面积。
生:9.6/6=1.6(平方厘米)错用了圆柱的体积公式,应该是9.6*3/6=4.8(平方厘米)。
总之,多数错误是因为学生审题习惯不佳,题目理解不到位造成的,以后还得继续注意这方面的引导。同时在练习的过程当中,还要进一步的加强变式方面的练习,提高计算的准确度和技巧,使得单元知识的掌握更加的牢固。
圆柱与圆锥教学反思篇6
新课之后综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:
一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,
(1)前轮转动一周,前进了多少米?
(2)如果每分钟滚动15周,压过的路面是多少平方米?
对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:
第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,经过反复思索,询问学生为什么出错,知道了原因,找出症结。我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利用手中的书本等帮助自己化抽象为形象,从而化难为易,强化思维灵敏度,增强理解力,而不能不加思考去拼凑算式,盲目作题。这样可以进一步提高学生的空间观念。
再如,把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?
大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。
怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在纸上画图,我受到了启发:是啊,当它们体积相等时,学生可以在纸上画图,凭直觉就能发现,当底面积也相等时,要让体积相等就要把圆锥的高画长,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱底面积的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的.1/3,会是什么样子呢?我画上以后,学生哈哈大笑,学生的开怀大笑的同时也轻松掌握了这一方法。同时在画的过程中学生总结出:等体等底的圆锥的高是圆柱高的3倍,等体等高的圆锥的底面积是圆柱底面积的3倍。以后,在这类题上就很少出错了。
通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。我们在教学中要善于诱导学生挖掘解题策略与方法,善于总结提炼一些有用的结论,获得高效学习,让学生轻松获得数学知识。
圆柱与圆锥教学反思6篇相关文章: