实数教案6篇

时间:
dopmitopy
分享
下载本文

教案中的知识链条越完整,学生在课堂中的学习效果就越显著,控制各环节时间分配以保证节奏,是教案具备可操作性的基础,​,骄才站小编今天就为您带来了实数教案6篇,相信一定会对你有所帮助。

实数教案6篇

实数教案篇1

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

p148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、p150 习题A:3。

2、基础训练:同步练习1。

实数教案篇2

课题:一元二次方程实数根错例剖析课

【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1 下列方程中两实数根之和为2的方程是()

(a) x2+2x+3=0 (b) x2-2x+3=0 (c) x2-2x-3=0 (d) x2+2x+3=0

错答: b

正解: c

错因剖析:由根与系数的关系得x1+x2=2,极易误选b,又考虑到方程有实数根,故由△可知,方程b无实数根,方程c合适。

例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

(a) k>-1 (b) k<0 (c) -1< k<0 (d) -1≤k<0

错解 :b

正解:d

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20xx广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2且k≠

例4 (20xx山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

正解:m = 2

例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ 4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范围是m≠±1且m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

?练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

∴当k< 时,方程有两个不相等的实数根。

(2)存在。

如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

∴当k= 时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

∴当a≥ -4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的'问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

考题汇编

1、(20xx年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20xx年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20xx年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20xx年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

实数教案篇3

学习目标:

1、能借助数轴理解相反数和绝对值得意义,会求一个数的相反数与绝对值。

2、 理解实数的意义,能用数轴上的点表示数。

3、 了解平方根算数平方根、立方根的概念。

重点:实数的分类。

难点:绝对值的意义和运用。

过程:

一、复习回顾实数的分类,方式:师生共同回顾后,师展示

二、自学:

(一)知识类:

1、相反数。a的相反数是,相反数等子本身的数量,若a、b互为相反数,则。

2、倒数。a(a≠0)的倒数是。用负指数表示为没有倒数。倒数等子本身的数是a、b互为倒数,则

3、绝对值。绝对值等于本身的数是,即

lal=

4、数轴。数轴的三要素为一一对应。

5、实数大小的比较。

(1)在数轴上表示两个数的点,左边的点表示的数表示的数。

(2)正数大于零;两个正数绝对值大的较。两个负数绝对值小的较

(3)设a.b是任意两实数。

若a-b>0,则b;若a-b=0,则b;若a-b<0,则b。

6、非负数的表现形式有

7、常见的几个实数:最小的自然数是,最大

的负整数是,绝对值最小的整数是

(二)运用类:

1、某水井水位最低时低于水平面5米,记做-5米,最高时低于水平面1米,则水井位h米中h的取值范围是

2、若x的相反数是3,lyl=5,则-l-2l的倒数是

实数教案篇4

知识与技能:

掌握本章基本概念与运算,能用本章知识解决实际问题。

过程与方法:

通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。

情感态度:

领悟分类讨论思想,学会类比学习的方法。

教学重点:

本章知识梳理及掌握基本知识点。

教学难点:

应用本章知识解决实际与综合问题。

一、知识框图,整体把握

教学说明:

1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。

2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。

二、释疑解惑,加深理解

1、利用平方根的.概念解题

在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。

例1已知某数的平方根是a+3及2a—12,求这个数。

分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0

解得a=3

∴a+3=6,2a—12=—6

∴这个数是36

教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。

2、比较实数的大小

除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。

实数教案篇5

学习目标:

1.了解算术平方根的概念,会用根号表示数的算术平方根;

2. 会用平方运算求某些非负数的算术平方根;

3.能运用算术平方根解决一些简单的实际问题.

学习重点:

会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.

学习难点:

区别平方根与算术平方根

掌握本章基本概念与运算,能用本章知识解决实际问题.

【知识与技能】

【过程与方法】

通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.

【情感态度】

领悟分类讨论思想,学会类比学习的方法.

【教学重点】

本章知识梳理及掌握基本知识点.

【教学难点】

应用本章知识解决实际与综合问题.

一、知识框图,整体把握

【教学说明】

1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.

2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.

二、释疑解惑,加深理解

1.利用平方根的概念解题

在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.

例1已知某数的平方根是a+3及2a-12,求这个数.

分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.

解得a=3.

∴a+3=6,2a-12=-6.

∴这个数是36.

【教学说明】

负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.

2.比较实数的大小

除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.

实数教案篇6

复习目标:

1、复习基本概念形成知识体系;

2、会利用图形的分割法求图形的面积。

复习过程:

一、板书课题,出示目标:

同学们,今天,我们一起来复习第六章,本节课的`学习目标是:

二、指导检测:

复习目标达到,从认真做检测题开始,下面,请看检测要求:

检测指导

1.认真审题,细心计算;

2. 把字写端正,步骤写完整;

3. 在十五分钟内完成。

预祝大家出色完成任务!

三、学生检测,教师巡视

a:p58“知识结构图”,完成p60 4、5

b:学生检测,教师巡视,搜集学生出现的错误,进行第二次备课。

四、板演、更正答案:

a:分别让2名学生上堂板演,有错误,鼓励其他同学更正。

b:对改(下面,比谁能在2分钟内对改完,不出错)

五、讨论:

1.独立更正:

2.小组讨论:(自己不能独立更正的题,小组解疑)

3.可能出现错误,需要集体讨论:(会了的小组帮助不会的小组解疑,若没有不同答案的且正确的,肯定答案,不讨论。如果有不同意见的,让同学讨论。)

可能出现错误需讨论的有:

评:第4题

(1)坐标对吗?(估计问题不大)

(2)他路上经过的地方对吗?(估计问题不大)

(3)图形对吗?(估计问题不大)

第5题

(1)红色图形平移的对吗?为什么?

引导学生说出:可以有两种平移的方法:第一种方法:先向上平移6个单位,再向右平移3个单位;第二种方法:先向右平移3个单位,再向上平移6个单位。

(2)略

归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学生说一说解类似题时该注意哪些问题?

六、课堂作业

必做题:p60 6、8

思考题:p61 10

实数教案6篇相关文章:

数学6~10数的认识教案6篇

序数6~10教案精选6篇

椭圆教案6篇

小学数学4到6年级教案优质6篇

幼儿园6一10减法教案6篇

童趣教案6篇

英语教案推荐6篇

跳纸杯游戏教案6篇

科学小班教案6篇

乌龟游戏教案6篇

实数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
101830